Bhagalpur College of Engineering, Bhagalpur

Model Question Paper

Branch - Civil Engineering

B.Tech $1^{\text {st }}$ Semester Exam, 2023
 (New course)

MATHEMATICS - I
(Calculus and Linear Algebra)
Time : 3 hours
Full Marks : 70
Instruction:
i) The marks are indicated in the right-hand margin.
ii) There are NINE question in this paper.
iii) Attempt FIVE question in all.
iv) Question No. 1 is Compulsory.

1. Choose the correct answer (any seven) :

$$
2 \times 7=14
$$

(a) If $Y=\int_{0}^{\pi} \log \sin x d x$, then the value of Y is
(i) $-\pi \log 2$
(ii) $\pi \log 2$
(iii) $\log 2$
(iv) $-\log 2$
(Turn over)

(2)

(b) The value of $\Gamma\left(\frac{1}{2}\right)$ is
(i) π
(ii) $\sqrt{\pi}$
(iii) $2 \sqrt{\pi}$
(iv) None
(c) The area of a loop of the curve $r=a \sin 3 \theta$, is
(i) $\frac{\pi \mathrm{a}^{2}}{12}$
(ii) $\frac{\pi}{12}$
(iii) $\frac{\mathrm{a}^{2}}{12}$
(iv) None
(d) The value of $\lim _{x \rightarrow 0} \operatorname{Sin} x \log x$ is
(i) 1
(ii) 0
(iii) 2
(iv) ∞
(e) The series
$\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}} \ldots \ldots \ldots \ldots \infty$ is convergent for
(i) $p \geq 1$
(ii) $p<1$
(iii) $p>1$
(iv) $p=1$

(3)

(f) If $\sum u_{n}=\sum \frac{1}{\mathrm{n}^{\mathrm{n}}}, \sum \mathrm{v}_{\mathrm{n}}=\sum \frac{1}{(\operatorname{logn})^{\mathrm{n}}}$, then
(i) $\sum u_{n}$ convergent but $\sum v_{n}$ divergent.
(ii) $\sum u_{n}$ divergent but $\sum v_{n}$ convergent.
(iii) $\sum u_{n}$ and $\sum v_{n}$ both convergent.
(iv) $\sum \mathrm{u}_{\mathrm{n}}$ and $\sum \mathrm{v}_{\mathrm{n}}$ both divergent.
(g) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$ is
(i) 0
(ii) 1
(iii) -1
(iv)Does not exist
(h) Gradient of the function
$Q=\log \left(x^{2}+y^{2}+z^{2}\right)$ is
(i) $\frac{2(x \hat{\imath}+y \hat{\jmath}+z k)}{x^{2}+y^{2}+z^{2}}$
(ii) $\frac{(x \hat{\imath}+y \hat{\jmath}+z \hat{k})}{x^{2}+y^{2}+z^{2}}$
(iii) $\frac{(x \hat{\imath}+y \hat{\jmath}+z k)}{x+y+z}$
(iv) $\frac{2(x \hat{\imath}+y \hat{\jmath}+z k)}{x+y+z}$
(i) Conjugate of a matrix

$$
\begin{array}{r}
A=\left[\begin{array}{ccc}
1+i & 2-3 i & 4 \\
7+2 i & -i & 3-2 i
\end{array}\right] \text { is } \\
\text { (i) } \bar{A}=\left[\begin{array}{ccc}
-1-i & -2+3 i & -4 \\
-7-2 i & i & -3+2 i
\end{array}\right]
\end{array}
$$

(4)

(ii) $\bar{A}=\left[\begin{array}{ccc}1-\mathrm{i} & 2+3 \mathrm{i} & 4 \\ 7-2 \mathrm{i} & \mathrm{i} & 3+2 \mathrm{i}\end{array}\right]$
(iii) $\bar{A}=\left[\begin{array}{ccc}1-\mathrm{i} & 2-3 \mathrm{i} & 4 \\ 7-2 \mathrm{i} & \text { i } & 3+2 \mathrm{i}\end{array}\right]$
(iv) $\bar{A}=\left[\begin{array}{lll}1 & 2 & 4 \\ 7 & 0 & 3\end{array}\right]$
(j) Rank of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 2 \\
2 & 6 & 5
\end{array}\right] \text { is }
$$

(i) 2
(iii) 3
(ii) 1
(iv) 0
2. (a) Evaluate $\int_{0}^{\infty} e^{-a x} x^{m-1} S i n b x d x$ in terms of Gamma function.
(b) Show that the area between the parabolas $\mathrm{y}^{2}=4 \mathrm{ax}$ and $\mathrm{x}^{2}=4 \mathrm{ay}$ is $\frac{16}{3} \mathrm{a}^{2}$.
3. (a) Prove that the equation $2 x^{3}-3 x^{2}-x+1=0$ has at least one root between 1 and 2 .

(5)

(b) Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{x} \tan x}{\left(\mathrm{e}^{\mathrm{x}}-1\right)^{3 / 2}}$
4. (a) Test the convergent of the series

$$
1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\frac{1}{3^{4}} \ldots \ldots \ldots \infty
$$

(b) Test the convergent of the series

$$
x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+\frac{5^{5} x^{5}}{5!}+\ldots \ldots . . . \infty
$$

$$
7+7
$$

5. (a) Obtain the Fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
(b) Express $f(x)=x$ as a half range cosine series in $0<x<2$.
6. (a) Find the maximum and minimum of the function

$$
f(x)=x^{5}-3 x^{4}+5
$$

(b) Discuss the continuity of the function

$$
f(x, y)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & \text { when } x \neq 0, y \neq 0 \\ 0 & \text { when } x=0, y=0\end{cases}
$$

(6)

7. (a) Find the centre of curvature of the parabola $x=a t^{2}, y=2 a t$ at the point ' t ' and hence find its evolute.
(b) Expand $\tan ^{-1} \mathrm{x}$ in power of $(\mathrm{x}-1)$.
8. (a) Obtain the eigen values and eigen vectors of the matrix
$\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$
and verify that the eigen vectors are orthogonal.
9. (a) Verify cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

Also express $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}$
$-5 A^{3}+8 A^{2}-2 A+I$ as a quadratic polynomial in A.

(7)

(b) If T is a liner transformation from R^{3} to R^{2} defined as

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y+z \\
y-z
\end{array}\right]
$$

Determine the matrix of the liner transformation T with respect to the ordered basis.

