Bhagalpur College of Engineering, Bhagalpur

Model Question Paper

Branch – Civil Engineering

B.Tech 1st Semester Exam, 2023 (New course)

MATHEMATICS – I (Calculus and Linear Algebra)

Time : 3 hours

Full Marks: 70

Instruction:

- i) The marks are indicated in the right-hand margin.
- ii) There are NINE question in this paper.
- iii) Attempt FIVE question in all.
- iv) Question No. 1 is Compulsory.
- 1. Choose the correct answer (any seven) :

2×7=14

(a) If Y = $\int_0^{\pi} \log \sin x \, dx$, then the value of Y is

- (i) $-\pi \log 2$ (ii) $\pi \log 2$
- (iii) log2 (iv) -log2

(2)

(b) The value of $\Gamma(\frac{1}{2})$ is

- (i) π (ii) $\sqrt{\pi}$
- (iii) $2\sqrt{\pi}$ (iv) None

(c) The area of a loop of the curve $r = asin3\Theta$, is

(i)
$$\frac{\pi a^2}{12}$$
 (ii) $\frac{\pi}{12}$
(iii) $\frac{a^2}{12}$ (iv) None

(d) The value of $\lim_{x\to 0} Sinx \log x$ is

(i) 1 (ii) 0

(e) The series

 $\frac{1}{1^{p}} + \frac{1}{2^{p}} + \frac{1}{3^{p}} \dots \dots \dots \infty \text{ is convergent for}$ (i) $p \ge 1$ (ii) p < 1(iii) p > 1(iv) p = 1

(f) If
$$\sum u_n = \sum \frac{1}{n^n}$$
, $\sum v_n = \sum \frac{1}{(\log n)^n}$, then
(i) $\sum u_n$ convergent but $\sum v_n$ divergent.
(ii) $\sum u_n$ divergent but $\sum v_n$ convergent.
(iii) $\sum u_n$ and $\sum v_n$ both convergent.
(iv) $\sum u_n$ and $\sum v_n$ both divergent.
(g) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ is
(i) 0 (ii) 1
(iii) -1 (iv)Does not exist
(h) Gradient of the function
 $Q = \log(x^2 + y^2 + z^2)$ is
(i) $\frac{2(x\hat{1}+y\hat{1}+z\hat{k})}{x^2+y^2+z^2}$ (ii) $\frac{(x\hat{1}+y\hat{1}+z\hat{k})}{x^2+y^2+z^2}$
(iii) $\frac{(x\hat{1}+y\hat{1}+z\hat{k})}{x+y+z}$ (iv) $\frac{2(x\hat{1}+y\hat{1}+z\hat{k})}{x+y+z}$
(i) Conjugate of a matrix
 $A = \begin{bmatrix} 1+i & 2-3i & 4\\ 7+2i & -i & 3-2i \end{bmatrix}$ is

(i)
$$\bar{A} = \begin{bmatrix} -1 - i & -2 + 3i & -4 \\ -7 - 2i & i & -3 + 2i \end{bmatrix}$$

(4)

(ii) $\bar{A} = \begin{bmatrix} 1 - i & 2 + 3i & 4 \\ 7 - 2i & i & 3 + 2i \end{bmatrix}$ (iii) $\bar{A} = \begin{bmatrix} 1 - i & 2 - 3i & 4 \\ 7 - 2i & i & 3 + 2i \end{bmatrix}$ (iv) $\bar{A} = \begin{bmatrix} 1 & 2 & 4 \\ 7 & 0 & 3 \end{bmatrix}$ (j) Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ is

- (i) 2 (ii) 1 (iii) 3 (iv) 0
- **2.** (a) Evaluate $\int_0^\infty e^{-ax} x^{m-1}$ Sinbx dx in terms of Gamma function.
 - (b) Show that the area between the parabolas y^2 =4ax and x^2 =4ay is $\frac{16}{3}a^2$.

7+7

3. (a) Prove that the equation $2x^3-3x^2-x+1 = 0$ has at least one root between 1 and 2.

(b) Evaluate
$$\lim_{x\to 0} \frac{\sqrt{x} \tan x}{(e^x - 1)^{3/2}}$$

- 4. (a) Test the convergent of the series $1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} \dots \dots \infty$ (b) Test the convergent of the series $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \frac{5^5x^5}{5!} + \dots \infty$
- 5. (a) Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
 - (b) Express f(x) = x as a half range cosine series in 0<x<2.</p>

7+7

7+7

6. (a) Find the maximum and minimum of the function $f(x) = x^5 - 3x^4 + 5$

(b) Discuss the continuity of the function

f(x,y) =
$$\begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{when } x \neq 0, y \neq 0 \\ 0 & \text{when } x = 0, y = 0 \end{cases}$$

7+7

7. (a) Find the centre of curvature of the parabola x=at², y=2at at the point 't' and hence find its evolute.

(b) Expand $\tan^{-1}x$ in power of (x-1).

7+7

8. (a) Obtain the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

and verify that the eigen vectors are orthogonal.

14

9. (a) Verify cayley-Hamilton theorem for the matrix

 $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ Also express $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4$ $-5A^3 + 8A^2 - 2A + I$ as a quadratic polynomial in A.

(b) If T is a liner transformation from $R^3 \mbox{ to } R^2 \mbox{ defined as }$

$$\mathsf{T}\begin{bmatrix}\mathsf{X}\\\mathsf{y}\\\mathsf{z}\end{bmatrix} = \begin{bmatrix}\mathsf{y}+\mathsf{z}\\\mathsf{y}-\mathsf{z}\end{bmatrix}$$

Determine the matrix of the liner transformation T with respect to the ordered basis.

7+7
