## https://biharengineeringuniversity.com/

## Bihar Engineering University, Patna **End Semester Examination - 2022**

Course: B. Tech. Code: 100312

Semester: III Subject: Mathematics-III(PDE, Probability & Statistics) Time: 03 Hours Full Marks: 70

## Instructions:-

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.

|     | Choose the correct answer of the following (Any seven question only): $[2 \times 7 = 14]$ (a) The mean of the Binomial distribution with n observation and probability of success P, is |                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| (4) | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                   | (iii) $\sqrt{np}$ (iv) $\sqrt{pq}$                            |
| (b) | (i) pq (ii) np                                                                                                                                                                          | (11) 4119 (11) 411                                            |
| (0) | The solution of $xp + yq = z$ is<br>(i) $f(x^2, y^2) = 0$                                                                                                                               | (ii) f(xy, yz) = 0                                            |
|     |                                                                                                                                                                                         | $\int (iv) f\left(\frac{x}{v}, \frac{y}{z}\right) = 0$        |
|     | (iii) f(x,y) = 0                                                                                                                                                                        |                                                               |
| (c) |                                                                                                                                                                                         |                                                               |
|     | (i) $x \cos(x + y)$                                                                                                                                                                     | $(ii)\frac{x}{2}\cos(x+y)$                                    |
|     | (iii) $x \sin(x + y)$                                                                                                                                                                   | $-(iv)\frac{x}{2}\sin(x+y)$                                   |
| (d  | ) If the correlation coefficient is 0, the ty                                                                                                                                           |                                                               |
|     | (i) Parallel                                                                                                                                                                            | (ii) Perpendicular                                            |
|     | (ii) Coincident                                                                                                                                                                         | (iv) Inclined at 45° to each other                            |
| (e) |                                                                                                                                                                                         |                                                               |
|     | f(x)                                                                                                                                                                                    | $= \begin{cases} Re^{-kx} & x > 0 \\ 0 & x \le 0 \end{cases}$ |
|     | is 1/6, then the value of K is                                                                                                                                                          | $x \leq 0$                                                    |
|     | (i) 4 (ii) 5                                                                                                                                                                            | (iv) 7                                                        |
| (f) |                                                                                                                                                                                         |                                                               |
| (-) | $\mathcal{A}(1) P (A \cap B) = P (A) \cdot P (B)$                                                                                                                                       | (ii) $P(A \cup B) = P(A) + P(B)$                              |
|     | $f(ii) P(A B) = P(A \cap B)/P(B)$                                                                                                                                                       |                                                               |
| (g) |                                                                                                                                                                                         | The probability that at least one of them will have           |
| (0) | facing up is                                                                                                                                                                            |                                                               |
|     | (i) 1/36                                                                                                                                                                                | (ii) 1/3                                                      |
|     | (iii) 25/36                                                                                                                                                                             | (iv) 11/36                                                    |
| (h) |                                                                                                                                                                                         | at is the probability that two heads and two tails wi         |
|     | (i) 3/8                                                                                                                                                                                 | (ii) 1/2                                                      |
|     | (iii) 5/8                                                                                                                                                                               | (iv) 3/4                                                      |
| (i) | If the mean and variance of a binon value of n is                                                                                                                                       | nial distribution are 5 and 4 respectively, then the          |
|     | (i) 10                                                                                                                                                                                  | (ii) 15                                                       |
|     | (iii) 20                                                                                                                                                                                | (iv) 25                                                       |
| (j) | If the density function of gamma distr                                                                                                                                                  |                                                               |
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                   |                                                               |
|     | $f(x) = \begin{cases} \frac{x^{\alpha-1}e^{\left(-x/\beta\right)}}{\beta^{\alpha} \Gamma \alpha}, & x > 0 \\ 0 & x \le 0 \end{cases}$                                                   |                                                               |
|     | 10 " *<0                                                                                                                                                                                |                                                               |

(iii) αβ

(iv)  $\alpha\beta^2$ 

P.T.O.

Then mean is equal to

(ii) β

(i)  $\alpha$ 

Solve the equations:

(a) 
$$x(y-z)p + y(z-x)q = z(x-y)$$

(b) 
$$\frac{\partial^3 z}{\partial^3 x} - 2 \frac{\partial^3 z}{\partial^2 x \partial y} = 2e^{2x} + 3x^2 y$$

- Q.3 (a) Solve the wave equation  $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$  under the conditions 17 17  $u(o,t) = 0, u(l,t) = 0 \text{ for all } t; \ u(x,0) = f(x) \text{and} \left(\frac{\partial u}{\partial t}\right)_{t=0} = g(x), 0 < x < l.$ 17
  - Solve the equation  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$  with boundary conditions  $u(x,0) = 3 \sin n\pi x$ , u(0,t) = 0 and u(1,t) = 0 where 0 < x < 1, t > 0. [7
- The ends A and B of a rod 20 cm long have the temperature at 30°C and 80°C until steady – state prevails. The temperature of the ends are changed to  $40^{\circ}$ C and  $60^{\circ}$ C respectively. Find the temperature distribution in the rod at time t. [7] (b)
  - Using the method of separation of variables, solve  $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ , given that  $u(0, y) = 8e^{-3y}$ [7]
- A purse contains 2 silver and 4 copper coins and a second purse contains 4 silver and 4 copper coins. If a coin is selected at random from one of the two purses, [7]

Given:  

$$P(A) = \frac{1}{4}, P(B) = \frac{1}{3} \text{ and } P(A \cup B) = \frac{1}{2}, \text{ evaluate } P\left(\frac{A}{B}\right), P\left(\frac{B}{A}\right), P(A \cap B') \text{ and } P\left(\frac{A}{B'}\right).$$
[7]

- There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white and one red. Find [7] the probability that the balls so drawn came from the second bag. Fit a poisson distribution to the following: (b)
  - [7]
  - Q.7 (a) Find Pearson's coefficient of skewness for the following data: Class: 10-19 20-29 30-39 [7] 40-49 50-59 60-69 Frequency: 70-79 80-89 9 14 20 15 8
    - A set of five similar coins is tossed 320 times and the result is No. of heads : 0 2 [7] 3 Frequency : 6 27 72 . 112 71 Test the hypothesis that the data follow a binomial distribution. 22
- 2.8 Let the joint probability density function of the continuous random variables x and y be  $f(x,y) = \begin{cases} kxy; & 0 < x < 2, \ 1 < y < 3 \\ 0; & elsewhere \end{cases}$ [14]

Find the value of K and probability density function of x + y. Also find the mean and variance of x and y (a)

- 0.9 Prove that: [7]
  - $(1-x^2) P'_n(x) = n [P_{n-1}(x) x P_n(x)]$ Where  $P_n(x)$  is the legender's polynomial of the first kind. (b) Prove that: [7]

$$\frac{d}{dr}[x^n J_n(x)] = x^n J_{n-1}(x)$$